skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sundaram, Subramanian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 12, 2025
  2. Cyclic actuation is critical for driving motion and transport in living systems, ranging from oscillatory motion of bacterial flagella to the rhythmic gait of terrestrial animals. These processes often rely on dynamic and responsive networks of oscillators—a regulatory control system that is challenging to replicate in synthetic active matter. Here, we describe a versatile platform of light-driven active particles with interaction geometries that can be reconfigured on demand, enabling the construction of oscillator and spinner networks. We employ optically induced Marangoni trapping of particles confined to an air–water interface and subjected to patterned illumination. Thermal interactions among multiple particles give rise to complex coupled oscillatory and rotational motions, thus opening frontiers in the design of reconfigurable, multiparticle networks exhibiting collective behavior. 
    more » « less
  3. Rationale: Dominant heterozygous variants in filamin C ( FLNC ) cause diverse cardiomyopathies, although the underlying molecular mechanisms remain poorly understood. Objective: We aimed to define the molecular mechanisms by which FLNC variants altered human cardiomyocyte gene and protein expression, sarcomere structure, and contractile performance. Methods and Results: Using CRISPR/Cas9, we introduced FLNC variants into human induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs). We compared isogenic hiPSC-CMs with normal (wild-type), ablated expression ( FLNC −/− ), or haploinsufficiency ( FLNC +/− ) that causes dilated cardiomyopathy. We also studied a heterozygous in-frame deletion ( FLNC +/Δ7aa ) which did not affect FLNC expression but caused aggregate formation, similar to FLNC variants associated with hypertrophic cardiomyopathy. FLNC −/− hiPSC-CMs demonstrated profound sarcomere misassembly and reduced contractility. Although sarcomere formation and function were unaffected in FLNC +/ − and FLNC +/Δ7aa hiPSC-CMs, these heterozygous variants caused increases in lysosome content, enhancement of autophagic flux, and accumulation of FLNC-binding partners and Z-disc proteins. Conclusions: FLNC expression is required for sarcomere organization and physiological function. Variants that produce misfolded FLNC proteins cause the accumulation of FLNC and FLNC-binding partners which leads to increased lysosome expression and activation of autophagic pathways. Surprisingly, similar pathways were activated in FLNC haploinsufficient hiPSC-CMs, likely initiated by the loss of stoichiometric FLNC protein interactions and impaired turnover of proteins at the Z-disc. These results indicate that both FLNC haploinsufficient variants and variants that produce misfolded FLNC protein cause disease by similar proteotoxic mechanisms and indicate the therapeutic potential for augmenting protein degradative pathways to treat a wide range of FLNC -related cardiomyopathies. 
    more » « less
  4. This work presents a microscale tissue testbed with closed loop mechanical control. The platform leverages a non-contact technique capable of simultaneous actuation and detection, both derived from magnetic fields. We demonstrate cyclic tension and compression of engineered microtissue as well as long-term monitoring of spontaneous beating inside an incubator. The device is capable of positional feedback with high spatial and temporal resolution, while maintaining optical access from a standard microscope. Such a platform will enable experimental design of arbitrary mechanical environments for tissue conditioning, maturation, and monitoring. 
    more » « less
  5. null (Ed.)